首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3317篇
  免费   385篇
  国内免费   151篇
  2024年   3篇
  2023年   35篇
  2022年   47篇
  2021年   61篇
  2020年   108篇
  2019年   120篇
  2018年   145篇
  2017年   121篇
  2016年   124篇
  2015年   108篇
  2014年   149篇
  2013年   338篇
  2012年   143篇
  2011年   148篇
  2010年   119篇
  2009年   166篇
  2008年   150篇
  2007年   191篇
  2006年   176篇
  2005年   168篇
  2004年   146篇
  2003年   142篇
  2002年   131篇
  2001年   83篇
  2000年   62篇
  1999年   58篇
  1998年   73篇
  1997年   73篇
  1996年   29篇
  1995年   53篇
  1994年   51篇
  1993年   39篇
  1992年   41篇
  1991年   22篇
  1990年   23篇
  1989年   22篇
  1988年   19篇
  1987年   12篇
  1986年   25篇
  1985年   23篇
  1984年   30篇
  1983年   12篇
  1982年   18篇
  1981年   6篇
  1980年   14篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1971年   2篇
排序方式: 共有3853条查询结果,搜索用时 15 毫秒
1.
Abstract

The stability of clathrate hydrates encaging highly polar guests has been investigated in order to explain the experimental observation that some amines form clathrate hydrates but alcohols act as inhibitor to hydrate formation. We choose methylamine and methanol as guest species and examine the stable structure, at which the total potential energy has a minimum value. At the local minima of those two hydrates, the potential energies of water-water and guest-water, and their hydrogen bonded networks are compared. It is found that methanol does not retain the host lattice structure, while the host-network structure is kept in the presence of methylamine. It is shown that the difference in the magnitude of the partial charge on the hydrogen atom between the hydroxyl and amino groups plays a much more significant role on the stability of both clathrate hydrates than the difference in molecular geometry. This is supported from the result of a methylamine-like model that has the same partial charges on the atoms in the hydrophilic site as methanol.  相似文献   
2.
3.
A procedure is described for the trapping and identification of hydrogen selenide and methyl selenol ( CH3SeH ). The volatile selenols were generated by reducing selenious acid or dimethyldiselenide with Zn dust and hydrochloric acid under a stream of nitrogen and passing into a trapping solution composed of 50 mM 1-fluoro-2,4-dinitrobenzene plus 83 mM sodium bicarbonate in 67% dimethylformamide:33% water. The selenols react rapidly to form stable dinitrophenyl (DNP) selenoethers that can be extracted into benzene; these are easily identified by TLC, HPLC, or mass spectrometry. Hydrogen selenide is trapped in 90-99% yield, primarily as the di-DNP- monoselenide with a trace of di-DNP- diselenide .  相似文献   
4.
The process of H2S oxidation by the phototrophic bacteriaThiocapsa roseopersicina andChlorobium phaeobacteroides, respectively, was monitored using a Pt-glass-Ag0, Ag2S electrode combination without liquid junction. Due to the resulting pe(pH) and pH2S plottings three steps can be distinguished: oxidation of H2S to an S(0) state, oxidation of S (0) to SO4 2–, and oxidation of the remaining H2S directly to SO4 2–. Differences between the investigated bacteria exist with respect to their individual oxidation strategies.Thiocapsa apparently stops oxidizing H2S at pH2S 7.5 (e.g. 10–7.5M H2S) and shifts to the utilization of the intracellularly stored S (0). In contrastChlorobium utilizes its extracellularly stored sulfur parallel to the extracellular H2S fraction. The corresponding Pt-sensor responses (pe7 values) were found to be similar to the corresponding partial redox equilibria (p7 values) of H2S oxidation stoichiometries as proposed by Van Niel (1931) and Trüper (1964). It is concluded that the recording of pe enables investigators to understand (and control) in situ redox processes, independent of their thermodynamic equilibration, only bound to changes of electroactivity vs. sensor.  相似文献   
5.
The effects of Rhizobium strain and its interaction with plant cultivar were examined in glasshouse-grownPhaseolus vulgaris in two experiments where the physiological attributes defining the symbiotic efficiency were determined. Strains of Rhizobium significantly affected nodulation, rates of N accumulation, partitioning of N within the mature shoot and remobilizaton of the N stored in the vegetative organs to the seeds. The most efficient symbiosis (strain CO5 with Negro Argel), in comparison with the least efficient symbiosis (strain 127 K-17 with Venezuela-350) showed higher rates of C2H2 reduction from flowering to mid pod fill stage, evolved less hydrogen from nodules and showed higher rates of N transport as well as higher percentages of ureide-N in the xylem sap. At maturity, the best cultivar/strain association exceeded the total N accumulated in the seed and the harvest index of the poorest symbiosis in 88% and 20%, respectively. The other symbiotic combinations were intermediate in all characteristics. Nitrogen accumulation in plant shoot showed highly significant correlation with acetylene reduction rates, nodule relative efficiency, total N transport in the xylem sap and percentage of N transported as ureides.  相似文献   
6.
When detergent-derived photosystem II (PSII) membranes are treated with CaCl2 to remove the three extrinsic proteins associated with the O2-evolving complex, the resulting membranes (CaPSII) can still catalyze water oxidation if sufficient Ca2+ and Cl- are present. When CaPSII membranes are exposed to single turnover flashes on an O2 rate electrode, anomalous O2 is produced by the first two flashes. The addition of catalase to the membrane suspension completely inhibits O2 produced by the first two flashes, but not by subsequent flashes. Exogenous H2O2 stimulates anomalous O2 production by the first few flashes in CaPSII membranes, but not in control PSII membranes. Diuron (DCMU) does not inhibit H2O2-stimulated O2 production by the first flash. However, it does inhibit the O2 yield of all subsequent flashes, indicating that all flash-induced O2 signals in CaPSII membranes are dependent on photosystem II electron transport. H2O2 stimulation of O2 yields is inhibited in Tris-, heat-, and EDTA-(ethylenediaminetetraacetic acid)-treated CaPSII. In the presence of high salt, H2O2 (but not EDTA) treatment of CaPSII, extracts Mn functional in normal photosynthetic O2 evolution. The addition of exogenous Mn2+ reconstitutes anomalous O2 production in Tris-and H2O2/EDTA-treated CaPSII preparations but only in the presence of H2O2. Anomalous H2O2-stimulated O2 production can be observed both with a Clark electrode (steady state) and an O2 rate electrode (flash sequence). The mechanism involves electron donation from H2O2, mediated by free Mn2+, to PSII, and the 33-kDa extrinsic protein under some conditions can block this process. Since H2O2 can remove functional Mn from CaPSII membranes, its presence can convert functional Mn to the Mn2+ mediator state required for anomalous O2 production. EDTA binds Mn in CaPSII disrupted by H2O2 and prevents anomalous O2 evolution.Abbreviations CaPSII a PSII preparation washed with approximately 1M CaCl2 - Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminetetraacetic acid - MES 2-[N-morpholino]-ethanesulfonic acid - PSII a detergent-derived photosystem II membrane preparation - RC reaction center - Tris tris(hydroxymethyl)-aminomethane - Yn oxygen rate electrode flash yield resulting from the nth flash of a sequence of single turnover flashes of light Operated by the Midwest Research Institute for the U.S. Department of Energy under contract DE-AC02-83CH10093.  相似文献   
7.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   
8.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   
9.
The ability of Desulfovibrio vulgaris strain Marburg (DSM 2119) to oxidize alcohols was surveyed in the presence and absence of hydrogen-scavenging anaerobes, Acetobacterium woodii and Methanospirillum hungatei. In the presence of sulfate, D. vulgaris grew not only on ethanol, 1-propanol, and 1-butanol, but also on isobutanol, 1-pentanol, ethyleneglycol, and 1,3-propanediol. Metabolism of these alcohols was simple oxidation to the corresponding acids, except with the last two substrates: ethyleneglycol was oxidized to glycolate plus acetate, 1,3-propanediol to 3-hydroxypropionate plus acetate. Experimental evidence was obtained, suggesting that 2-methoxyethanol was not utilized by all the cells of strain marburg, but by a spontaneous mutant. 2-Methoxyethanol was oxidized to methoxyacetate by the mutant. Co-culture of strain Marburg plus A. woodii grew on ethanol, 1-propanol, 1-butanol, and 1,3-propanediol in the absence of sulfate. Co-culture of strain Marburg plus M. hungatei grew on ethanol, 1-propanol, and 1-butanol, but not on ethyleneglycol and 1,3-propanediol, Co-culture of the mutant plus A. woodii or M. hungatei did not grow on 2-methoxyethanol.  相似文献   
10.
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号